

Edexcel A2 Physics: Electric and Magnetic Fields – Calculation Practice

Praneel Physics

1. A charge of $5\ \mu C$ is placed in an electric field of strength $200\ N/C$. Calculate the force experienced by the charge. (P)

Working and Answer:

$$\text{Force} = \text{Charge} \times \text{Electric Field} = 5 \times 10^{-6}\ C \times 200\ N/C = 1 \times 10^{-3}\ N.$$

2. What is the potential difference across a capacitor that stores 2 mC of charge and has a capacitance of $4\text{ }\mu\text{F}$? (P)

Working and Answer:

$$\text{Potential Difference} = \frac{\text{Charge}}{\text{Capacitance}} = \frac{2 \times 10^{-3}\text{ C}}{4 \times 10^{-6}\text{ F}} = 500\text{ V.}$$

3. Calculate the energy stored in a capacitor with a capacitance of $10\text{ }\mu\text{F}$ charged to a potential difference of 12 V . (P)

Working and Answer:

$$\text{Energy} = \frac{1}{2}CV^2 = \frac{1}{2} \times 10 \times 10^{-6}\text{ F} \times (12\text{ V})^2 = 0.00072\text{ J.}$$

4. A wire carries a current of 3 A and has a resistance of 4Ω . Calculate the voltage across the wire. (P)

Working and Answer:

$$\text{Voltage} = \text{Current} \times \text{Resistance} = 3\text{ A} \times 4\Omega = 12\text{ V}.$$

5. If a magnetic field strength is 0.5 T and a wire carrying a current of 2 A is placed perpendicular to the field, calculate the force on a 1 m length of the wire. (P)

Working and Answer:

$$\text{Force} = BIL = 0.5\text{ T} \times 2\text{ A} \times 1\text{ m} = 1\text{ N}.$$

6. A capacitor has a capacitance of $6 \mu F$ and is charged to $9 V$. What is the charge on the capacitor? (PP)

Working and Answer:

$$\text{Charge} = C \times V = 6 \times 10^{-6} F \times 9 V = 54 \times 10^{-6} C = 54 \mu C.$$

7. Calculate the electric field strength at a distance of $0.1 m$ from a point charge of $3 \mu C$. (PP)

Working and Answer:

$$\text{Electric Field} = \frac{k \cdot |Q|}{r^2} = \frac{8.99 \times 10^9 Nm^2/C^2 \cdot 3 \times 10^{-6} C}{(0.1 m)^2} = 269700 N/C.$$

8. A solenoid has a length of 0.5 m , a cross-sectional area of 0.01 m^2 , and carries a current of 2 A . If it has 100 turns, calculate the magnetic field inside the solenoid. (PP)

Working and Answer:

$$B = \mu_0 \frac{NI}{L} = (4\pi \times 10^{-7} \text{ Tm/A}) \frac{100 \times 2}{0.5} = 5.03 \times 10^{-5} \text{ T.}$$

9. A parallel plate capacitor has a plate area of 0.02 m^2 and a separation of 0.01 m . If the dielectric constant is 2.5, calculate its capacitance. (PP)

Working and Answer:

$$C = \frac{\varepsilon_0 \cdot A}{d} = \frac{(8.85 \times 10^{-12} \text{ F/m}) \cdot 2.5 \cdot 0.02}{0.01} = 4.425 \times 10^{-12} \text{ F} = 4.425 \text{ pF.}$$

10. A charged particle with a charge of $1.6 \times 10^{-19} C$ moves through a magnetic field of strength $0.3 T$ at a velocity of $2 \times 10^6 m/s$. Calculate the magnetic force acting on the particle if the angle between the velocity and the magnetic field is 90° . (PP)

Working and Answer:

$$F = BQv \sin(\theta) = 0.3 T \cdot 1.6 \times 10^{-19} C \cdot 2 \times 10^6 m/s = 9.6 \times 10^{-14} N.$$

11. A circuit has a total resistance of 12Ω and a current of $1.5 A$. Calculate the total voltage supplied by the battery. (PPP)

Working and Answer:

$$V = I \times R = 1.5 A \times 12 \Omega = 18 V.$$

12. A magnetic field of 0.4 T is applied perpendicular to a wire carrying a current of 5 A . If the length of the wire in the field is 0.3 m , calculate the force on the wire. (PPP)

Working and Answer:

$$F = BIL = 0.4\text{ T} \times 5\text{ A} \times 0.3\text{ m} = 0.6\text{ N}.$$

13. Calculate the capacitance of a capacitor that stores 0.01 C of charge at a potential difference of 20 V . (PPP)

Working and Answer:

$$C = \frac{Q}{V} = \frac{0.01\text{ C}}{20\text{ V}} = 5 \times 10^{-4}\text{ F} = 500\text{ }\mu\text{F}.$$

14. A particle with a mass of 0.01 kg is moving in a magnetic field with a velocity of $3 \times 10^5\text{ m/s}$ and experiences a magnetic force of $6 \times 10^{-3}\text{ N}$. Calculate the magnetic field strength. (PPP)

Working and Answer:

$$B = \frac{F}{Qv} \Rightarrow Q = \frac{F}{Bv} \Rightarrow B = \frac{F}{mv} = \frac{6 \times 10^{-3}\text{ N}}{0.01\text{ kg} \cdot 3 \times 10^5\text{ m/s}} = 2 \times 10^{-8}\text{ T.}$$

15. A charged particle enters a uniform electric field of strength 1500 N/C and experiences a force of 0.003 N . Calculate the charge of the particle. (PPPP)

Working and Answer:

$$F = EQ \Rightarrow Q = \frac{F}{E} = \frac{0.003\text{ N}}{1500\text{ N/C}} = 2 \times 10^{-6}\text{ C.}$$

16. A solenoid with 200 turns, a length of 0.4 m , and a current of 3 A produces a magnetic field. Calculate the magnetic field strength inside the solenoid. (PPP)

Working and Answer:

$$B = \mu_0 \frac{NI}{L} = (4\pi \times 10^{-7} \text{ Tm/A}) \frac{200 \times 3}{0.4} = 6 \times 10^{-4} \text{ T.}$$

17. A capacitor is charged to 50 V and has a capacitance of $20\text{ }\mu\text{F}$. Calculate the energy stored in the capacitor. (PPP)

Working and Answer:

$$E = \frac{1}{2}CV^2 = \frac{1}{2} \times 20 \times 10^{-6} \text{ F} \times (50 \text{ V})^2 = 0.025 \text{ J.}$$

18. A wire of length 0.5 m carrying a current of 4 A is placed in a magnetic field of 0.2 T . Calculate the angle at which the maximum force occurs if the force is measured to be 0.4 N . (PPP)

Working and Answer:

$$F = BIL \sin(\theta) \Rightarrow \sin(\theta) = \frac{F}{BIL} = \frac{0.4\text{ N}}{0.2\text{ T} \cdot 4\text{ A} \cdot 0.5\text{ m}} = 1 \Rightarrow \theta = 90^\circ.$$

19. A charged particle with a charge of $1.6 \times 10^{-19} C$ moves through a magnetic field of strength $0.5 T$ at a velocity of $1 \times 10^6 m/s$. Calculate the radius of the circular path it follows. (PPPPP)

Working and Answer:

$$r = \frac{mv}{BQ} \Rightarrow m = 9.11 \times 10^{-31} kg \Rightarrow r = \frac{(9.11 \times 10^{-31} kg)(1 \times 10^6 m/s)}{(0.5 T)(1.6 \times 10^{-19} C)} = 0.0114 m.$$

20. A capacitor is charged to $100 V$ and has a capacitance of $50 \mu F$. Calculate the total charge stored in the capacitor. (PPPPP)

Working and Answer:

$$Q = C \times V = 50 \times 10^{-6} F \times 100 V = 5 \times 10^{-3} C = 5 mC.$$

21. A magnetic field of 0.1 T is applied to a wire carrying a current of 10 A . If the length of the wire in the field is 0.2 m , calculate the force on the wire. (PPPPP)

Working and Answer:

$$F = BIL = 0.1\text{ T} \times 10\text{ A} \times 0.2\text{ m} = 0.2\text{ N.}$$

22. A parallel plate capacitor has a plate area of 0.01 m^2 and a separation of 0.005 m . Calculate the capacitance if the dielectric constant is 3. (PPPPP)

Working and Answer:

$$C = \frac{\epsilon_0 \cdot A}{d} = \frac{(8.85 \times 10^{-12}\text{ F/m}) \cdot 3 \cdot 0.01}{0.005} = 5.31 \times 10^{-12}\text{ F} = 5.31\text{ pF.}$$

23. A charged particle with a mass of $9.11 \times 10^{-31} \text{ kg}$ and a charge of $1.6 \times 10^{-19} \text{ C}$ moves in a magnetic field of 0.2 T with a velocity of $2 \times 10^6 \text{ m/s}$. Calculate the radius of the circular path. (PPPPP)

Working and Answer:

$$r = \frac{mv}{BQ} = \frac{(9.11 \times 10^{-31} \text{ kg})(2 \times 10^6 \text{ m/s})}{(0.2 \text{ T})(1.6 \times 10^{-19} \text{ C})} = 0.057 \text{ m.}$$